Analyses of multiplicity distributions by means of the Modified Negative Binomial Distribution and its KNO scaling function

نویسندگان

  • Takeshi Osada
  • Noriaki Nakajima
  • Minoru Biyajima
  • Naomichi Suzuki
چکیده

We analyze various data of multiplicity distributions by means of the Modified Negative Binomial Distribution (MNBD) and its KNO scaling function, since this MNBD explains the oscillating behavior of the cumulant moment observed in e+e− annihilations, h-h collisions and e-p collisions. In the present analyses, we find that the MNBD (discrete distributions) describes the data of charged particles in e+e− annihilations much better than the Negative Binomial Distribution (NBD). To investigate stochastic property of the MNBD, we derive the KNO scaling function from the discrete distribution by using a straightforward method and the Poisson transform. It is a new KNO function expressed by the Laguerre polynomials. In analyses of the data by using the KNO scaling function, we find that the MNBD describes the data better than the gamma function. Thus, it can be said that the MNBD is one of useful formulas as well as NBD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyses of multiplicity distributions by means of the Modi ed Negative Binomial Distribution and its KNO scaling function

We analyze various data of multiplicity distributions by means of the Modi ed Negative Binomial Distribution (MNBD) and its KNO scaling function, since this MNBD explains the oscillating behavior of the cumulant moment observed in ee annihilations, h-h collisions and e-p collisions. In the present analyses, we nd that the MNBD (discrete distributions) describes the data of charged particles in ...

متن کامل

KNO scaling function of modified negative binomial distribution

We investigate the KNO scaling function of the modified negative binomial distribution (MNBD), because this MNBD can explain the oscillating behaviors of the cumulant moment observed in e+e− annihilations and in hadronic collisions. By using a straightforward method and the Poisson transform we derive the KNO scaling function from the MNBD. The KNO form of experimental data in e+e− collisions a...

متن کامل

Multiplicity Distributions in Strong Interactions: a Generalized Negative Binomial Model

A three-parameter discrete distribution is developed to describe the multiplicity distributions observed in totaland limited phase space volumes in different collision processes. The probability law is obtained by the Poisson transform of the KNO scaling function derived in Polyakov’s similarity hypothesis for strong interactions as well as in perturbative QCD, ψ(z) ∝ zα exp(−zμ). Various chara...

متن کامل

توزیع چندگانگی ذرات باردار در نابودی +e-e در انرژی مرکز جرم GeV54-57 و مقیاس KNO

In this paper, we investigate the multiplicity of charged particles in e+ e– annihilation by using different models. To achieve this we first fit the multiplicity distribution of charged particles in the energy range of 54-57 GeV by using both the Poisson distribution and KNO scaling, then we compare these results with multiplicity distribution at the lower energies. This comparison shows that...

متن کامل

Analyses of multiplicity distributions of e+e− and e-p collisions by means of modified negative binomial distribution and Laguerre-type distribution: Interrelation of solutions in stochastic processes

A pure birth stochastic process with several initial conditions is considered. We analyze multiplicity distributions of e+e− collisions and e-p collisions, usig the Modified Negative Binomial Distribution (MNBD) and the Laguerre-type distribution. Several multiplicity distributions show the same minimum χ2’s values in analyses by means of two formulas: In these cases, we find that a parameter N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008